

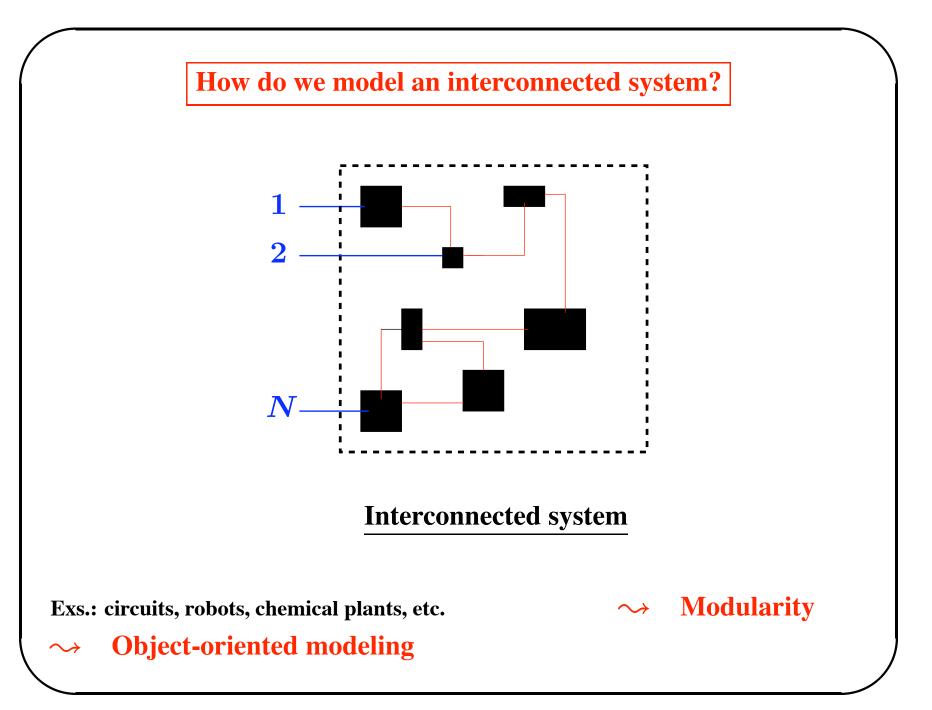
MODELING, MODULARITY

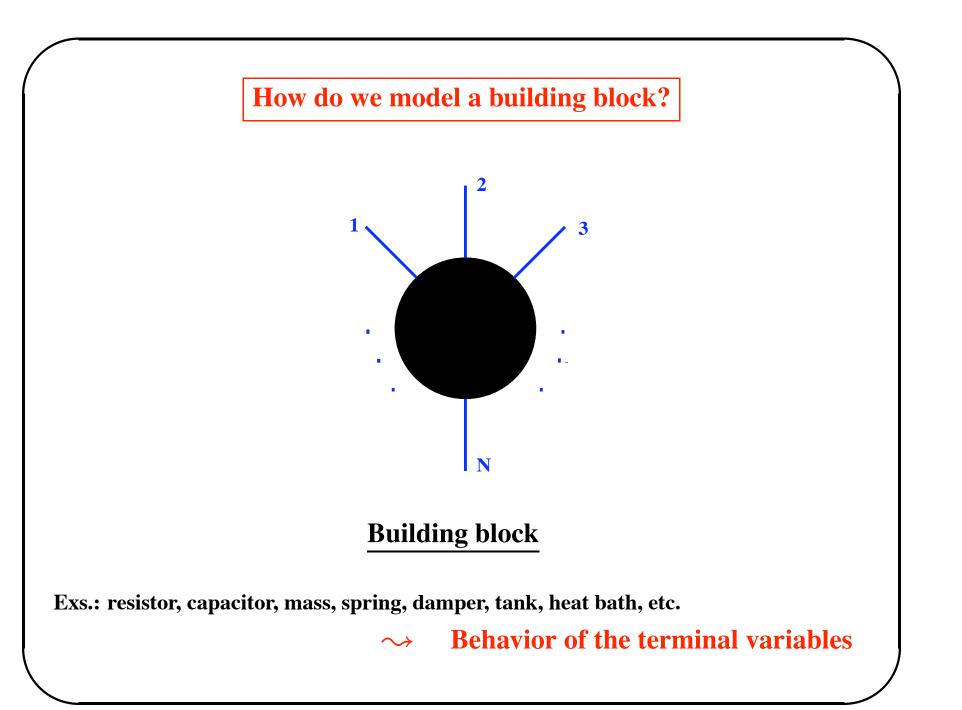
and

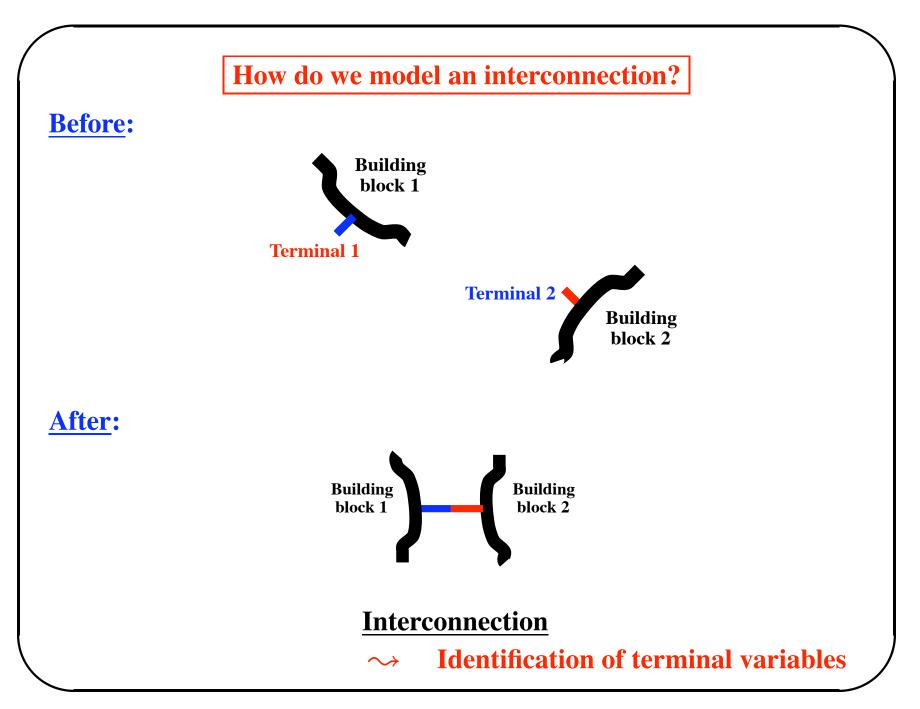
MODULES

Jan C. Willems University of Groningen, NL BOYDFEST, Rice University, Houston, TX March 9, 2001

Dedicated to Boyd Pearson







Examples of terminal variables:

Type of terminal	Variables	Signal space
electrical	(voltage, current)	\mathbb{R}^2
mechanical (1-D)	(force, position)	\mathbb{R}^2
mechanical (2-D)	((position, attitude),	$(\mathbb{R}^2 imes S^1)$
	(force, torque))	$ig imes (\mathbb{R}^2 imes T^*S^1)$
mechanical (3-D)	((position, attitude),	$(\mathbb{R}^2 imes S^2)$
	(force, torque))	$ imes (\mathbb{R}^2 \! imes \! T^* S^2)$
thermal	(temp., heat flow)	\mathbb{R}^2
fluidic	(pressure, flow)	\mathbb{R}^2
fluidic - thermal	(pressure, flow,	\mathbb{R}^4
	temp., heat flow)	

Examples of interconnection constraints:

Pair of terminals	Terminal 1	Terminal 2	Law
electrical	(V_1,I_1)	(V_2,I_2)	$V_1 = V_2, I_1 + I_2 = 0$
1-D mech.	(F_1,q_1)	(F_2,q_2)	$ig F_1 + F_2 = 0, q_1 = q_2$
2-D mech.			
thermal	(T_1,Q_1)	(T_2,Q_2)	$ig T_1 = T_2, Q_1 + Q_2 = 0$
fluidic	(p_1,f_1)	(p_2,f_2)	$p_1 = p_2, f_1 + f_2 = 0$
fluidic -	$(p_1, f_1,$	$(p_2, f_2,$	$p_1=p_2, f_1+f_2=0,$
thermal	$T_1,Q_1)$	$T_2,Q_2)$	$ig T_1=T_2, Q_1+Q_2=0$

Classical approach

Building blocks:

• input/output:

Recognize input and output variables Model the input-to-output map or relation

• input/state/output:

Recognize input, output, and state variables Model the input-to-state and the state-to-output maps

$$\rightsquigarrow \quad rac{d}{dt}x = f(x,u) \quad y = h(x)$$

Interconnections:

Identify inputs with outputs

Combine series, parallel, feedback connection.

Beautiful concepts, very effective algorithms, but i/o is simply

not suitable as a 'first principles' starting point.

For building blocks:

Terminal variables are localized \neq = A physical system is not a signal processor.

But: even CS and DES do not use the i/o approach!

For interconnected systems:

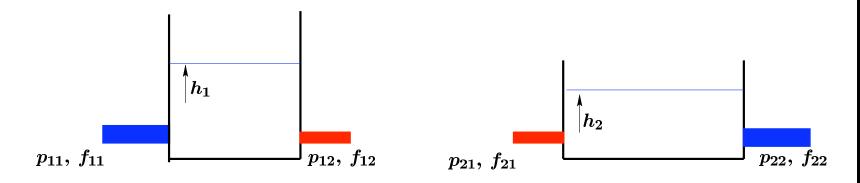
It is *not feasible to recognize the signal flow graph* before we have a model. The signal flow graph should be **deduced** from a model!

More suitable approach for dealing with interconnections \rightarrow

Bondgraphs.

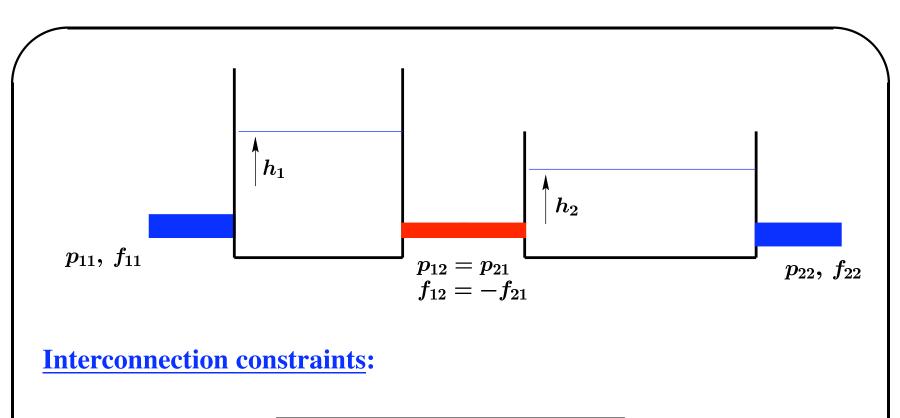
 \Rightarrow System \Rightarrow

The inappropriateness of input - to - output connections is illustrated well by the following simple physical example:



Logical choice of inputs: the pressures $p_{11}, p_{12}, p_{21}, p_{22}$, and of outputs: the flows $f_{11}, f_{12}, f_{21}, f_{22}$ $(h_1, h_2$: state variables)

In any case, the input/output choice should be 'symmetric'.



$$ig| p_{12} = p_{21}, \quad f_{12} = -f_{21}.$$

Equates two inputs and two outputs.

BEHAVIORAL SYSTEMS

A system :=

 \mathbb{T} = the set of <u>independent</u> variables time, space, time and space

 $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$

W = the set of *dependent* variables

(= where the variables take on their values), signal space, space of field variables, . . .

 $\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$: <u>the behavior</u>

= the admissible trajectories

$$\Sigma=(\mathbb{T},\mathbb{W},\mathfrak{B})$$

for a trajectory $w : \mathbb{T} \to \mathbb{W}$, we thus have:

 $w \in \mathfrak{B}$: the model allows the trajectory w, $w \notin \mathfrak{B}$: the model forbids the trajectory w.

In the remainder of this lecture, $\mathbb{T} = \mathbb{R}^n$, $\mathbb{W} = \mathbb{R}^w$, $w : \mathbb{R}^n \to \mathbb{R}^w$, $(w_1(x_1, \cdots, x_n), \cdots, w_w(x_1, \cdots, x_n))$, often, n = 1, independent variable time, or n = 4, independent variables (t, x, y, z), \mathfrak{B} = solutions of a system of constant coefficient linear ODE's or PDE's.

Linear constant coefficient ODE's.

Variables: $w_1, w_2, \ldots w_w$, their derivatives, combined in any number of linear equations. In vector/matrix notation:

$$m{w} = egin{bmatrix} m{w_1} \ m{w_2}, \ dots \ m{v_1} \ m{w_2}, \ m{w_1} \ m{w_2}, \ m{w_1} \ m{w_2}, \ m{w_1} \ m{w_2}, \ m{w_2} \ m{w_1} \ m{w_2}, \ m{w_2} \ m{w_1} \ m{w_2}, \ m{w_2} \ m{w_2} \ m{w_1} \ m{w_2}, \ m{w_2} \ m{w_2} \ m{w_2} \ m{w_1} \ m{w_2} \ m{w_$$

Yields

$$R_0w+R_1rac{d}{dt}w+\cdots+R_{
m n}rac{d^{
m n}}{dt^{
m n}}w=0,$$

with
$$R_0, R_1, \cdots, R_{ ext{n}} \in \mathbb{R}^{ ext{g} imes imes}$$
.

Combined with the polynomial matrix

$$R(\xi)=R_0+R_1\xi+\dots+R_{
m n}\xi^{
m n},$$

we obtain

$$R(\frac{d}{dt})w = 0.$$

Examples:

• The ubiquitous

$$P(\frac{d}{dt})y = Q(\frac{d}{dt})u, \ w = (u, y)$$

with $P,Q \in \mathbb{R}^{\bullet imes \bullet}[\xi], \det(P) \neq 0$ and, perhaps, $P^{-1}Q$ proper.

• The ubiquitous

$$\frac{d}{dt}x = Ax + Bu; \ y = Cx + Du, \ w = (u, y).$$

• The descriptor systems

$$\frac{d}{dt}Ex + Fx + Gw = 0.$$

• etc., etc.

Notation:

Ring of real polynomials in n variables $\rightarrow \mathbb{R}[\xi_1, \cdots, \xi_n]$.

$$\mathbb{R}^{n}[\xi_{1},\cdots,\xi_{n}],\mathbb{R}^{\bullet}[\xi_{1},\cdots,\xi_{n}],\mathbb{R}^{n_{1}\times n_{2}}[\xi_{1},\cdots,\xi_{n}],$$
$$\mathbb{R}^{\bullet\times n}[\xi_{1},\cdots,\xi_{n}],\mathbb{R}^{n\times \bullet}[\xi_{1},\cdots,\xi_{n}],$$
$$\mathbb{R}^{\bullet\times \bullet}[\xi_{1},\cdots,\xi_{n}].$$

 $\mathbb{R}[\xi_1, \cdots, \xi_n]$ has much less convenient properties than $\mathbb{R}[\xi]$: not Euclidean domain, hence not p.i.d., no Smith form, etc.

- $\mathbb{T} = \mathbb{R}^n$, n independent variables,
- $\mathbb{W} = \mathbb{R}^{w}$, w dependent variables,
- \mathfrak{B} = the solutions of a linear constant coefficient system of PDE's.
- Let $R \in \mathbb{R}^{\bullet imes w}[\xi_1, \cdots, \xi_n]$, and consider

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{
m n}})oldsymbol{w}=oldsymbol{0}$$
 (*)

Define its behavior

 $\mathfrak{B} = \{ \mathbf{w} \in \mathfrak{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^{w}) \mid (*) \text{ holds } \}$

 $\mathfrak{C}^{\infty}(\mathbb{R}^n,\mathbb{R}^w)$ mainly for convenience, but important for some results.

An example of a DPS: Maxwell's equations

$$egin{aligned}
abla \cdot ec{B} &=& rac{1}{arepsilon_0}
ho \,, \
abla & imes ec{B} &=& -rac{\partial}{\partial t} ec{B}, \
abla & imes ec{B} &=& 0 \,, \ c^2
abla imes ec{B} &=& rac{1}{arepsilon_0} ec{j} + rac{\partial}{\partial t} ec{E}. \end{aligned}$$

- $\mathbb{T} = \mathbb{R} \times \mathbb{R}^3 \text{ (time and space),}$
- $w~=(ec{E},ec{B},ec{j},
 ho)$

(electric field, magnetic field, current density, charge density), $\mathbb{W} = \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}$,

 $\mathfrak{B} =$ set of solutions to these PDE's.

<u>Note</u>: 10 variables, 8 equations! $\Rightarrow \exists$ free variables.

Notation:

$$(\mathbb{R}^n,\mathbb{R}^{w},\mathfrak{B})\in\mathfrak{L}_{\mathrm{n}}^{w}, \quad \mathrm{or}\ \mathfrak{B}\ \in\mathfrak{L}_{\mathrm{n}}^{w},$$

$$\mathfrak{B} \ = \ \ker(R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n})).$$

'kernel representation'.

R defines $\mathfrak{B} = \ker(R(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}))$, but not vice-versa!

;; \exists 'intrinsic' characterization of $\mathfrak{B} \in \mathfrak{L}_{n}^{W}$??

Define the *annihilators* of **B** by

$$\mathfrak{N}_{\mathfrak{B}} := \{ n \in \mathbb{R}^{\scriptscriptstyle \mathbb{W}}[\xi_1, \cdots, \xi_{\scriptscriptstyle n}] \mid n^{
ightarrow}(rac{\partial}{\partial x_1}, \cdots, rac{\partial}{\partial x_{\scriptscriptstyle n}})\mathfrak{B} = 0 \}.$$

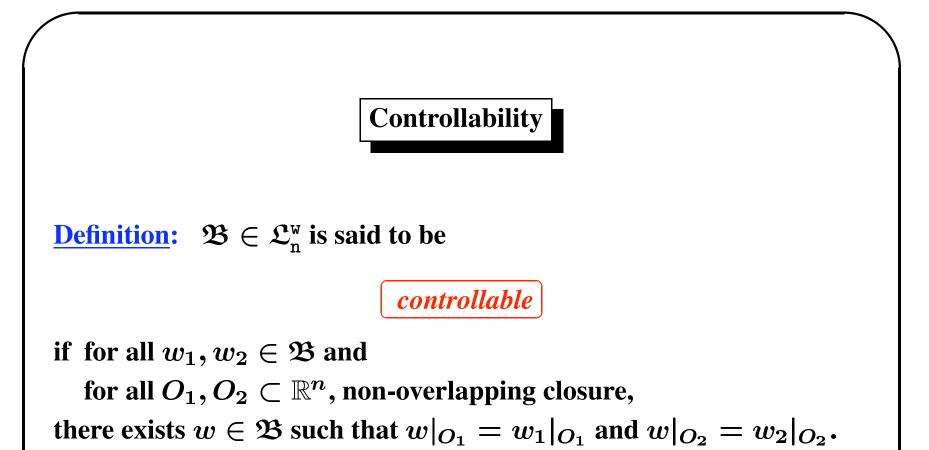
 $\mathfrak{N}_{\mathfrak{B}}$ is clearly a sub-module of $\mathbb{R}^{\mathbb{W}}[\xi_1, \cdots, \xi_n]$.

Let $\langle R \rangle$ denote the sub-module of $\mathbb{R}^{\mathbb{W}}[\xi_1, \cdots, \xi_n]$ spanned by the transposes of the rows of R. Obviously $\langle R \rangle \subseteq \mathfrak{N}_{\mathfrak{B}}$. But, in fact:

$$\mathfrak{N}_{\mathfrak{B}} = < R >$$

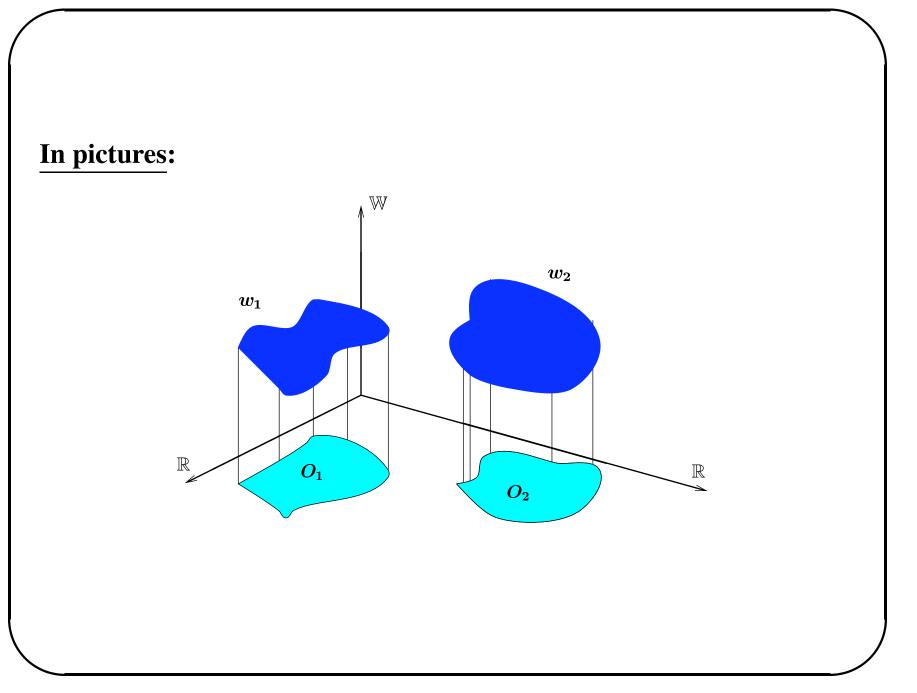
Therefore

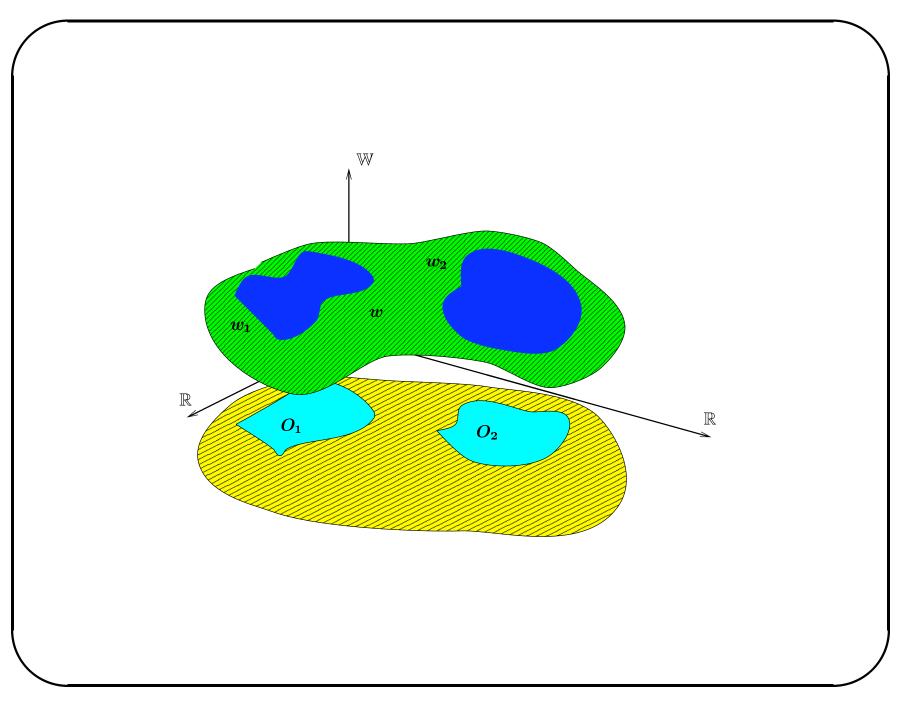
$$\mathfrak{L}_{n}^{\mathtt{w}} \stackrel{1:1}{\longleftrightarrow}$$
sub-modules of $\mathbb{R}^{\mathtt{w}}[\xi_{1}, \cdots, \xi_{n}]$



Controllability : \Leftrightarrow the elements of \mathfrak{B} are 'patch-able'.

Special case: Kalman controllability for input/state systems.





Conditions for controllability

Representations of \mathfrak{L}_n^{W}:

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n})w=0$$
 (*)

called a *'kernel' representation* of $\mathfrak{B} = \ker(R(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}));$

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n}) w = M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n}) \ell \quad (**)$$

called a *'latent variable' representation* of the manifest behavior $\mathfrak{B} = (R(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}))^{-1} M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}) \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\ell}).$

Missing link:

$$oldsymbol{w} = M(rac{\partial}{\partial x_1}, \cdots, rac{\partial}{\partial x_{ ext{n}}}) \ell \hspace{0.4cm} (***)$$

called an *'image' representation* of $\mathfrak{B} = \operatorname{im}(M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})).$

Elimination theorem \Rightarrow

every image (of a linear constant coefficient PDO) is also a kernel.

¿¿ Which kernels are also images ??

<u>Theorem</u>: The following are equivalent for $\mathfrak{B}\in\mathfrak{L}_n^{\scriptscriptstyle W}$:

- 1. 33 is controllable,
- 2. **B** admits an image representation,

3. for any
$$a \in \mathbb{R}^{\mathbb{W}}[\xi_1, \cdots, \xi_n],$$

 $a^{\top}[\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}]\mathfrak{B}$ equals 0 or all of $\mathfrak{C}^{\infty}(\mathbb{R}^n, \mathbb{R}),$

4. $\mathbb{R}^{\mathbb{W}}[\xi_1, \cdots, \xi_n]/\mathfrak{N}_{\mathfrak{B}}$ is torsion free,

etc.

Algorithm: R + syzygies + Gröbner basis \Rightarrow numerical test on coefficients of R.

ARE MAXWELL'S EQUATIONS CONTROLLABLE ?

The following equations in the *scalar potential* $\phi : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}$ and the *vector potential* $\vec{A} : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$, generate exactly the solutions to Maxwell's equations:

$$egin{aligned} ec{E} &=& -rac{\partial}{\partial t}ec{A} -
abla \phi, \ ec{B} &=&
abla imes ec{A}, \ ec{j} &=& arepsilon_0 rac{\partial^2}{\partial t^2}ec{A} - arepsilon_0 c^2
abla^2 ec{A} + arepsilon_0 c^2
abla (
abla \cdot ec{A}) + arepsilon_0 rac{\partial}{\partial t}
abla \phi, \
ho &=& -arepsilon_0 rac{\partial}{\partial t}
abla \cdot ec{A} - arepsilon_0
abla^2 \phi. \end{aligned}$$

Proves controllability. Illustrates the interesting connection

controllability $\Leftrightarrow \exists$ potential!

SUMMARY

- The i/s/o paradigm is inadequate for first principles *modeling*. It fails in the first examples, it is unsuited for interconnection, for *modularity*, for object-oriented modeling.
- Universal paradigm: *Behavioral systems*. Illustrated via PDE's.
- Linear shift-invariant differential systems $\stackrel{1:1}{\longleftrightarrow}$ sub-modules of $\mathbb{R}^{\mathbb{W}}[\xi_1, \cdots, \xi_n].$
- Controllability \Leftrightarrow *sub-module* is torsion-free.
- ∃ extensive theory, adapted to modeling, covering all the classical results, unifying physical models with DES, etc.

THANK YOU

&

BEST WISHES, BOYD !