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How do we model an interconnected system?

Interconnected system

Exs.: circuits, robots, chemical plants, etc. ~>  Modularity

\f\» Object-oriented modeling

/




How do we model a building block?

N

Building block

Exs.: resistor, capacitor, mass, spring, damper, tank, heat bath, etc.

~> Behavior of the terminal variables

-
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Before:

After:
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How do we model an interconnection? \

Building
block 1

Terminal 1
Terminal 2
Building
block 2
Building Building
block 1 block 2
Interconnection

~» Identification of terminal Variables/
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Gxamples of terminal variables:

(force, torque))

Type of terminal Variables Signal space

electrical (voltage, current) R?

mechanical (1-D) (force, position) R?

mechanical (2-D) ((position, attitude), | (R? x S1)
(force, torque)) X (R? x T*S1)

mechanical (3-D) ((position, attitude), | (R? x S?)

temp., heat flow)

thermal (temp., heat flow) R?
fluidic (pressure, flow) R?
fluidic - thermal (pressure, flow, R4
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Examples of interconnection constraints:

Pair of Terminal | Terminal Law

terminals 1 2

electrical (Vi,I1) (Va, I,) Vi=Vo,I1 +1,=0

1-D mech. | (F1,q1) | (F2,4q2) Fy + F2 =0,q1 = q2

2-D mech.

thermal (T1,Q1) | (T2,Q2) T, =T5,Q01 + Q2 =0

fluidic (P1, f1) (P2, f2) pr=p2,f1+f2=0

fluidic - (P15 f1, (P2, fa, p1 = p2, f1 + f2 =0,
thermal | T1,Q1) | 12,Q2) |11 =T12,Q:1+Q2=0

-
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/ Classical approach I

Building blocks:

e input/output:

Recognize input and output variables
Model the input-to-output map or relation

e Iinput/state/output:

Recognize input, output, and state variables
Model the input-to-state and the state-to-output maps

d
~ aw:f(m,u) y = h(x)

Interconnections:

Identify inputs with outputs
\ Combine series, parallel, feedback connection.

/




Geautiful concepts, very effective algorithms, but i/o is simply \

not suitable as a ‘first principles’ starting point.

For building blocks:

Terminal variables are localized # —=|System |=

A physical system is not a signal processor.

But: even CS and DES do not use the i/0 approach!

For interconnected systems:

It is not feasible to recognize the signal flow graph before we have a
model. The signal flow graph should be deduced from a model!

Qore suitable approach for dealing with interconnections ~» Bondgraphs. /
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The inappropriateness of input - to - output connections is illustrated
well by the following simple physical example:

B |

— . : —

P11, f11 | P12, f12 P21, f21 P22, fo2

Logical choice of inputs: the pressures pi1, P12, P21, P22,
and of outputs: the flows f11, fi2, fo1, f22
(h1, ho: state variables)

In any case, the input/output choice should be ‘symmetric’.

\_ /
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—

P11, Ju1

§
L

P12 = P21 D22, f22
f12 — _f21
Interconnection constraints:
D12 — P21, f12 = —f21-

Equates two inputs and two outputs.

#+ equating inputs with Outputs./
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‘ BEHAVIORAL SYSTEMS '

A system := | X = (T, W, 25)

T = the set of independent variables

time, space, time and space

W = the set of dependent variables

(= where the variables take on their values),
signal space, space of field variables, . ..

B C W' : the behavior|| =the admissible trajectories

=
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2:(T,W,%)I

for a trajectory w : T — W, we thus have:

w € B : the model the trajectory w,
w ¢ B : the model forbids the trajectory w.

In the remainder of this lecture, T = R"*, W = R",
w: R" — RW, (wl(:cl, cee wn), *c ww(wla R wn))?
often, n = 1, independent variable time,
or n = 4, independent variables (¢, z, y, z),

'8 — solutions of a system of constant coefficient
linear ODE’s or PDE’s.

-
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/ Linear constant coefficient ODE’s. '

Variables: wq, wo, ... w,, their derivatives, combined in any
number of linear equations. In vector/matrix notation:

w1y Rli,l Rli,z T Rli,w
w — W2, R — Rg,l Rg,z s RE,W
— : o =
K K K
| W | _Rg,l Rg,2 T Rg,W_
Yields
Row + R + + R, @ 0
w —w —w =
0 Ldt dto ’

~
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Combined with the polynomial matrix

R(¢) = Ro + R1&+ --- + R,E",

we obtain

R(w =

15
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Examples:

e The ubiquitous

P(Hy = Q(gH)u, w=(u,y)

~

with P, Q € R***[£], det(P) # 0 and, perhaps, P~1Q proper.

e The ubiquitous

dt

4y = Ax + Bu; y = Cx + Du, w = (u,y).

e The descriptor systems

e etc., etc.

-

d
—F F Gw = 0.
It rx+ rxe + Gw
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Notation:

Ring of real polynomials in n variables ~~» R[&1,:-+ , &)

Rn[gla"' 9€n]9R.[€19"' 9€n]9Rn1xn2[€19"' 9€n]9
R.Xn[€17”° 7€n]aRnx.[€1a”° a€n]7
R.X.[€17°” 7€n]°

R[&1,+ ¢+ , & ] has much less convenient properties than R[£]:
not Euclidean domain, hence not p.i.d., no Smith form, etc.

-
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Linear differential systems (PDE’s) I

= [R", n independent variables,

W = R, w dependent variables,
5 = the solutions of a linear constant coefficient system of PDE’s.

Let R € R**"[&1, -+ ,&4], and consider

R(go= s 5o )w =0 (%)

? Oz,

Define its behavior

B = {w € €°(R",R") | (*) holds }

©(R™, R") mainly for convenience, but important for some results.

N

~

/

18



An example of a DPS: Maxwell’s equations

— ].
V-E = —p,
€0
— a—»
VXxE = ——B,
ot
V-B = 0,
c°’VxB = —j3+4 —F
€0 ot

T = R x R3 (time and space),
w = (E ’ B ) .; s P)
(electric field, magnetic field, current density, charge density),
W =R3 x R3 x R® xR,
'8 — set of solutions to these PDE’s.
Note: 10 variables, 8 equations! = 1 free variables.

/
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Notation:

(R™,R",B) € £7, orB € £,

o o
3231 ’ ’ amn

B = ker(R( ).

‘kernel representation’.
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R defines B8 = ker(R(aiwl, cee %)), but not vice-versa!

(¢ 3 ‘intrinsic’ characterization of 5 € £¥ 77

Define the annihilators of 5 by

Ny :={n € R"[{1,--- ,&] | nT(aiwl’.” ’(‘%n)% = 0}.

Iy is clearly a sub-module of RY[£1,- -+ , &, ].

Let < R > denote the sub-module of R"[£, - - - , &,| spanned by the
transposes of the rows of R. Obviously < R >C ly. But, in fact:

Ny =< R >

Therefore

£y &1y sub-modules of R [STRERI N

- /
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Controllability I

Definition: B € £ is said to be

[ controllable ]

if for all wq,wo € B and
for all O, O, C R™, non-overlapping closure,
there exists w € B such that w|p, = w1|p, and w|p, = wa2|o,-

Controllability :< the elements of 5 are ‘patch-able’.

Special case: Kalman controllability for input/state systems.

-
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In pictures:
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‘ Conditions for controllability I

Representations of £:

R(aiwl’... ,aawn)w:() (*)
called a ‘kernel’ representation of B = ker(R(aiwl, cee %));
) ) ) )

R(a—wlv”‘ ,G—%)w — M(a—wlw“ 93_%)£ (%)
called a ‘latent variable’ representation of the manifest behavior
Sy —= (R(a%l’ cee aiwn))—lM(aZl s, %)COO(R, RE).
Missing link: | w = M(aiwl,no ,8%)2 (% * *)
called an ‘image’ representation of B = im(M (6%31, cee %)).

N
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Glimination theorem = \

every image (of a linear constant coefficient PDO) is also a kernel.

& Which kernels are also images ??

Theorem: The following are equivalent for 5 € £ :

1. B is controllable,

2. | B admits an image representation,

3. foranya € R"[£1, -+ , &,
aT[aiwl, cen aiwn]% equals O or all of € (R, R),

4. |RY[1, -+, &] /Dy is torsion free,

etc.

ngrithm: R + syzygies + Grobner basis => numerical test on coefficients of R/
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/ ‘ ARE MAXWELL’S EQUATIONS CONTROLLABLE ? I

to Maxwell’s equations:

The following equations in the scalar potential ¢ :R x R® — R and
the vector potential A : R x R3 — R, generate exactly the solutions

~

_. o -
E = —aA—VqS,
B = VXA,
j = € 8—25—6 AAV32A 4 o’V (V - A) + ¢ Equ
0512 0 0 05, Vs
g Y 2
P = —E?OEV'A—E?()V ¢.

Proves controllability. Illustrates the interesting connection

\ controllability < 3 potential!

/
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SUMMARY '

The i/s/o paradigm is inadequate for first principles modeling.
It fails in the first examples, it is unsuited for interconnection, for
modularity, for object-oriented modeling.

Universal paradigm: Behavioral systems. Illustrated via PDE’s.

Linear shift-invariant differential systems
&2 sub-modules of R” €1y ¢ 5 &l

Controllability < sub-module is torsion-free.

d extensive theory, adapted to modeling, covering all the
classical results, unifying physical models with DES, etc.

/
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THANK YOU '

‘ BEST WISHES, BOYD ! I
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